REINFORCED CONCRETE-I

(Design for Shear)

Design for Shear

The maximum shear V_u in a beam must not exceed the design shear capacity of the beam cross section ϕV_n , where $\phi = 0.75$ and V_n is the nominal shear strength of the concrete and the shear reinforcing.

$$\phi V_n \ge V_u$$

The value of ϕV_n can be broken down into the design shear strength of the concrete ϕV_c plus design shear strength of the shear reinforcing ϕV_s . The value of ϕV_c is provided in the Code for different situations, and thus we are able to compute the required values of ϕV_s for each situation:

$$\phi V_n \ge V_u$$

$$\Rightarrow \phi V_c + \phi V_s \ge V_u$$

For this derivation an equal sign is used:

$$V_u = \phi V_c + \phi V_s$$
 where $V_c = \left(\frac{\sqrt{f_c'}}{6}\right) b_w d$

ASSUMPTIONS

- Stirrups crossing the cracks have yielded.
- Shear crack form at a 45° angle.

For inclined stirrup:

$$V_{s} = \frac{A_{v} f_{y} (\sin \alpha + \cos \alpha) d}{s}$$

 A_{y} = Cross sectional area of the stirrup bar n = number of stirrup scrossing the crack d = effective depth

s = center to center spacing of stirrups

$$V_s = A_v f_y n$$
 where $n = \frac{d}{s}$;

$$\therefore V_s = A_v f_y \frac{d}{s} \Rightarrow s = \frac{A_v f_y d}{V}$$

$$\therefore V_s = A_{\nu} f_{\nu} \frac{d}{s} \Rightarrow s = \frac{A_{\nu} f_{\nu} d}{V_{\nu}}$$

and the value of V_s can be determined as follows:

$$V_u = \phi V_c + \phi V_s \Longrightarrow V_s = \frac{V_u - \phi V_c}{\phi}$$

where α is the angle between the stirrup sand the longitudinal axis of the member.

For a bent - up bar or group of bent - up bars at the same distance from the support:

$$V_s = A_{\nu} f_{\nu} \sin \alpha \le 3\sqrt{f_c'} b_{\nu} d$$

Code Requirements

- 1. If V_u exceeds one half ϕV_c stirrup sare required.
- 2. When shear reinforcement is required, ACI code specifies a minimum amount:

$$A_{v \text{ min}} = \frac{\sqrt{f_c'}b_w s}{16f_y} \ge \frac{0.33b_w s}{f_y}$$

- 3. To insure that every diagonal crack is crossed by at least one stirrup, the maximum spacing of stirrups is the smaller of d/2 or 600 mm.
- 4. If $V_s > \frac{1}{3} \sqrt{f_c} b_w d$ these maximum spacings are to be reduced by one half. These closer spacings will lead to narrower inclined cracks.
- 5. Under no circumstances may V_s be allowed to exceed $\frac{2}{3}\sqrt{f_c}b_w d$. The shear strength of a beam cannot be increased indefinitely by adding more and more shear reinforcing because the concrete will eventually disintegrate no matter how much shear reinforcing is added.
- 6. In most cases, beam is to be designed for shear at a distnce d from the face of the support

Summary of steps Involved in Vertical Stirrup Design

- 1. Draw V_u diagram
- 2. Calculate V_{μ} at a distance d from the support (with certain exceptions)

3. Calculate
$$\phi V_c$$
 where $V_c = \left(\frac{\sqrt{f'_c}}{6}\right) b_w d$

4. Stirrups are needed if $V_u > \frac{1}{2}\phi V_c$

Design of stirrups

- 1. Calculate theoretical stirrup spacing $s = \frac{A_v f_y d}{V_s}$ where $V_s = \frac{V_u \phi V_c}{\phi}$
- 2. Determine maximum spacing to provide minimum area of shear reinforcement

$$A_{v \text{ min}} = \frac{\sqrt{f_c'}b_w s}{16f_y}$$
 but not less than $A_{v \text{ min}} = \frac{0.33b_w s}{f_y}$

$$\Rightarrow s = \frac{16f_y A_v}{\sqrt{f_c'} b_w} \text{ but not more than } \frac{f_y A_v}{0.33b_w}$$

To insure that every diagonal crack is crossed by at least one stirrup

- 3. If $V_s < \frac{1}{3} \sqrt{f_c} b_w d$: the maximum spacing of stirrups is the smaller of d/2 or 600 mm.
- 4. If $V_s > \frac{1}{3} \sqrt{f_c} b_w d$: the maximum spacing of stirrups is the smaller of d/4 or 300 mm.
- 5. V_s may not be $> \frac{2}{3} \sqrt{f_c} b_w d$
- 6. Minimum practical spacing ≈ 75 or 100 mm.

Critical Sections for Shear

■ When reaction in the direction of the applied shear introduces compression into end region of the member, sections located less than a distance *d* from the face of the support may be designed for the same shear as that computed at a distance *d*.

Problem

Calculate desired spacing for 10 mm two legged stirrups for the beam shown below. The beam has a clear span of 4.2 m and supports adead load including its own weight of 60 kN/m and a live load of 90 kN/m. $f_c^{'} = 30$ MPa., normal weight, and $f_v = 420$ MPa

All dimensions in mm

SOLUTION

$$w_u = 1.2DL + 1.6LL = 1.2 \times 60 + 1.6 \times 90 = 216 \text{ kN/m}$$

$$V_u$$
 at left end = $\frac{w_u L_c}{2} = \frac{216 \times 4.2}{2} = 453.6 \text{ kN}$

 V_u at distance d from face of support:

$$\frac{V_u}{(2.1-d)} = \frac{453.6}{2.1} \Rightarrow \frac{V_u}{(2.1-0.55)} = \frac{453.6}{2.1}$$

$$\Rightarrow V_u = 334.8 \text{ kN}$$

$$453.6 \,\mathrm{kN} \quad \phi V_c = \phi \left(\frac{\sqrt{f_c'}}{6} \right) b_w d = 0.75 \left(\frac{\sqrt{30}}{6} \right) 375 \times 550$$

$$\Rightarrow \phi V_c = 141209.7 \text{ N} = 141.2 \text{ kN}$$
 $\therefore \frac{1}{2} \phi V_c = 70.6 \text{ kN}$

$$:: V_u > \frac{1}{2}\phi V_c \Rightarrow \text{Stirrup s are required.}$$

$$\therefore V_s = \frac{V_u - \phi V_c}{\phi} = \frac{334.8 - 141.2}{0.75} = 258.13 \text{ kN } (\because V_u = \phi V_c + \phi V_s)$$

$$\frac{2}{3}\sqrt{f_c}b_w d = \frac{2}{3}\sqrt{30}\times375\times550 = 753118.5 \text{ N} = 753.12 \text{ kN}$$

$$:: V_s < \frac{2}{3} \sqrt{f_c} b_w d$$
 OK

Theoretical required spacing at left end:

SOLUTION (Contd.)

$$s = \frac{A_{v} f_{y} d}{V_{s}} = \frac{2 \times \left(\frac{\pi}{4} \times 10^{2}\right) \times 420 \times 550}{(258.13 \times 1000)} = 140.6 \text{ mm}$$

let us provide stirrups @ 125 mm.

Length in which stirrupsneeded:

$$\frac{x}{70.6} = \frac{2.1}{453.6} \Rightarrow x = 0.33 \,\text{m}$$
 or $(2.1 - 0.33) = 1.77 \,\text{m} \approx 1.75 \,\text{m}$ from left end.

Spacings selected: 2@175 mm (:: 350/175 in that region where no spacing needed)

14@125 mm (:: 1750/125 = 14)

Note stirrup sare symmetric about the center line.

Note: for economy calculate different spacings according to variation of shear force.

SOLUTION (Contd.)

Maximum Spacing:

(i) To provide minimum area of shear reinforcement:

$$s_{\text{max}} = \frac{16f_{y}A_{v}}{\sqrt{f_{c}}b_{w}} = \frac{16 \times 420 \times 2 \times \left(\frac{\pi}{4} \times 10^{2}\right)}{\sqrt{30} \times 375} = 513.9 \text{ mm}$$

but not more than
$$\frac{f_{y}A_{y}}{0.33b_{w}} = \frac{420 \times 2 \times \left(\frac{\pi}{4} \times 10^{2}\right)}{0.33 \times 375} = 533.12 \text{ mm}$$

$$\Rightarrow s_{\text{max}} = 513.9 \text{ mm}$$

(ii) To insure that every diagonal crack is crossed by at least one stirrup:

$$\frac{1}{3}\sqrt{f_c'}b_w d = \frac{1}{3}\sqrt{30} \times 375 \times 550 = 376559.2 \text{ N} = 376.6 \text{ kN}$$

$$V_s = 258.13 \,\mathrm{kN}$$

$$s_{\text{max}} = \text{Smaller of}\left(\frac{d}{2} \text{ or } 600 \text{ mm}\right) \qquad \because V_s < \frac{1}{3} \sqrt{f_c} b_w d$$

$$\Rightarrow$$
 $s_{\text{max}} = \text{Smaller of (275 or 600 mm)} = 275 mm$

$$\Rightarrow s_{\text{max}} = 275 \text{ mm}$$

$$:: s < s_{\text{max}} \quad \underline{\underline{OK}}$$